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Abstract—The mission-critical voice (MCV) testbed is a hard-
ware and software architecture for conducting human subject
experiments with mission critical voice communications. The data
collected during experiments is stored on a remote server, but
the testbed lacks an environment for researchers to perform
statistical analysis on the experiment data. We present a solution
using JupyterHub to allow users to run JupyterLab to perform
analysis of experiment data and audio files on the remote server
directly from their web browser. We configured our JupyterHub
deployment with DockerSpawner and a customized HTTP header
based authenticator for a seamless integration into the Google
OAuth2 authentication system of the MCV testbed.

I. Introduction

In the age of big data, many data is stored on remote servers
or in the cloud. In some situations, the data stored is subject
to restrictions on its transfer and use. In these scenarios, one
may wish to expose an interface for users to perform analysis
of the data on a remote server or in the cloud remotely.

The National Institute of Standards and Technology (NIST)
testbed (Fig. 1) is a hardware and software architecture for
conducting human subject experiments with mission-critical
voice (MCV) communications. It consists of an Intel Next Unit
of Computing (NUC) computer and a collection of Raspberry
Pi based user terminals with push-to-talk (PTT) speaker-
microphones attached, all connected via an Ethernet network
that can emulate a radio frequency (RF) channel environment
and its impairments (bandwidth limitation, delay, packet loss,
bit errors). It is managed via a web-based user interface based
on ReactJS. Through the UI, the experimenter can program
(script) a communication-based experiment and conduct the
experiment with first responder volunteers in a controlled
environment. The data collected during the experiment are
stored on a remote server (an Intel computer). Since the
experiment data contains sensitive information and is subject
to Institutional Review Board (IRB) conditions, we wish to
allow researchers to analyze the experiment data stored on
the remote server directly from the web-based interface of the
testbed.

We present an architecture (Fig. 2) based on JupyterHub [1]
to allow users analyze experiment data on the remote server
directly from their web browser. We used a customized HTTP
header based authenticator and a reverse HTTP proxy to
integrate JupyterHub into the authentication system of the NIST
testbed. In addition, we use DockerSpawner [2] to launch a
dedicated JupyterLab [3] instance within a docker container on
the remote server for each testbed user. Finally, we use docker
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Fig. 1. Testbed architecture

volume and bind mounts to achieve data persistence and data
sharing between users.
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Fig. 2. Architecture of JupyterLab Integration for NIST testbed

The remainder of this paper is structured as follows. In Sec-
tion III, we present an overview of Project Jupyter [4] and the
subsystems of JupyterHub that make managing multiple users’
connections to JupyterLab instances possible. In Section IV,
we propose an architecture for integrating JupyterHub into a
system with an existing authentication system and enabling
users to access existing services on the JupyterHub host from
within the JupyterLab instance in a docker container.

II. Assignment
JupyterLab is a web-based environment for interactive

computing in Python. JupyterLab programs are organized into
notebooks. Each notebook consists of a series of steps that
can be executed interactively. The ability to generate graphs



directly within the notebook makes JupyterLab popular in the
scientific community.
The goal of this project is to find a way to integrate

JupyterLab into NIST testbed. Specifically, we would like to:
• Run a JupyterLab instance on the testbed for direct access
to sensitive data

• Integrate JupyterLab with the testbed’s authentication
system (OAuth2)

• Give notebooks access to the data collected during human
subject experiments

• Give notebooks access to audio recordings stored on the
testbed

• Add an ability to run notebooks on experiments repeatedly
As part of this project, we also want to create a few simple

notebooks to demonstrate the integration.

III. Background

Jupyter Notebook is a document specification (.ipynb) file
that interweaves code, narrative text, equations and rich output.
It also refers to the web-based interface where users can run
notebook files [4].
As an extension of Jupyter Notebook, JupyterLab provides

a more extensible interface that allows users to run multiple
notebooks in separate tabs within a single browser tab.
Both Jupyter Notebook and JupyterLab are intended for

single user. Officially, it is discouraged to set up Jupyter
Notebook or JupyterLab to allow concurrent access from
multiple users because users’ commands may collide, clobber
and overwrite each other. To serve Jupyter Notebooks for mul-
tiple users, the official solution is JupyterHub [5]. JupyterHub
provides a framework for providing JupyterLab for multiple
users concurrently. It offers many advantages.

Firstly, it provides a solid framework for managing multiple
users’ connections to JupyterLab concurrently while making
it highly customizable. Users can customize key parts of
JupyterHub, such as user authentication and spawning of
notebook servers, to tailor to their specific needs.

Secondly, since its first preview release in March 2015, it has
been actively developed and maintained by a dedicated team.
As part of the open-sourced Project Jupyter, it integrates well
with JupyterLab and will integrate well with its future releases.
This allows us to leverage new features of JupyterLab by simply
upgrading JupyterHub, which reduces the risk of having to
re-design and implement the architecture for managing multiple
JupyterLab instances.
Lastly, JupyterHub could be scaled easily to thousands of

users. It has been used in a variety of context, ranging from
research labs to university classes.

A. Distributions
Currently, JupyterHub can only be installed on Linux/Unix

based systems. As of 2021, there are 2 main distributions
of JupyterHub. A JupyterHub distribution is tailored to a
specific set of use cases and is easier to set up than setting up
JupyterHub from scratch [1].

• Zero to JupyterHub on Kubernetes [6]: for a large number
of users, scalable to large number of users and machines

• The Littlest JupyterHub (TLJH) [7]: for 1-100 users on a
single machine

B. Subsystems
JupyterHub initiates 3 important types of processes, which

are typically referred to as the subsystems of JupyterHub:

Fig. 3. JupyterHub Subsystems [8]

• configurable http proxy (node configurable-http-
proxy [9]): proxies all JupyterHub users’ requests to other
subsystems. This is the public facing part of JupyterHub.

• hub (tornado [10]): authenticates hub users and launches
Jupyter Notebook server for them. This is the heart of
JupyterHub and has many customizable components. Its
main job is to control the life-cycle of the notebook server
on behalf of the user.

• single-user notebook server (Jupyter Notebook): the
dedicated per-user Jupyter Server that allows users to
create, edit and execute notebooks.

C. Interaction between subsystems
When JupyterHub starts, it launches the configurable-http-

proxy and the hub. The single-user notebook server, however,
is launched and terminated by the hub on demand for each
user. The process through which the hub starts a single-user
notebook server is referred to as spawning.

In Fig. 3, / represents the base URL of HTTP proxy started
by JupyterHub. When a user tries to access any URI that starts
with /hub/, the proxy will direct the request to the hub, while
those starting with /user/[name]/ will be directed to the
given user’s single-user notebook server.



Each single-user notebook server communicates with the
hub on two important occasions:

• user authentication: the notebook server makes an API
request to the hub to identify the user via OAuth the
hub authenticates the user by checking the cookie in the
request. An authenticated user has the cookie set by the
hub on successful login.

• route registration: after successful spawning, the notebook
server registers a route at the proxy from which subsequent
user requests are re-directed to itself. The notebook server
makes an API request to the hub, which then notifies the
proxy to add the route.

D. Customization
The flexibility of JupyterHub comes from the possibility

and ease of customizing the hub subsystems. JupyterHub
encapsulates each key functionality, such as authentication
and spawning, in a Python class object and provides a
base class from which users can inherit to create their own
implementation.
A common paradigm across Project Jupyter is using

Traitlets [11] for exposing points of configuration. Traitlets
provides a set of configuration classes for programmers to
inherit from. The base configuration classes allow users to
expose class attributes as configurable options, which are
referred to as traits.

Among the advantages that Traitlets offers, the most notable
ones are

• dynamic type checking: each trait has a type and an error
will be thrown if the type of assigned trait value doesn’t
match. Supported trait types as of Traitlets 5.0 include int,
container types such as list and dict, customized classes,
etc.

• ease of configuration: users can set trait values via
command line arguments, JSON file(s) or pure Python
configuration file(s).

• automatic generation of configuration: Traitlets pro-
vide a primitive to easily generate a Python configura-
tion file with all configurable traits of the application,
along with help strings. In the case of JupyterHub, a
jupyterhub_config.py file can be generated under the
current working directory simply with

$ jupyterhub --generate_config

There are a variety of customized components that are avail-
able for use directly. In the case of authenticators, JupyterHub
comes with PAMAuthenticator where each hub user is also
a system user and users are authenticated with their system
username and password. An OAuthenticator module is also
available to authenticate users via OAuth from OAuth providers
such as Google, GitHub, etc. On top of these, there are several
authenticators written by the JupyterHub community [12],
among the most popular being the jwtauthenticator that
authenticates user with a JSON web token.
In the case of spawners, based on whether the notebook

server is spawned on a cluster or a single server and if it is
containerized, the popular ones are grouped in Fig. 4.

Fig. 4. Grouping of Popular Spawners

The option of spawning notebook servers on a cluster enables
JupyterHub to be scaled to support thousands of users. For
example, the groundwork of KubeSpawner draws largely from
the successful use of JupyterHub and Kubernetes as a hosted
computing environment for student assignments at UC Berkeley
in their Data 8 Program, which in the recent offering in Spring
2021, has over 1300 students enrolled [13].

IV. System Design

A. Authenticator

The NIST testbed uses Google OAuth2 for user authenti-
cation. If we use authenticators such as OAuthenticator and
jwtauthenticator, each user needs to be authenticated twice -
once for the testbed and another for JupyterHub. This double
authentication is redundant and ideally,

• if a user has already authenticated with the testbed, he/she
should be able to launch a single-user notebook server
directly

• otherwise redirect to the testbed’s login page and on
authentication success, redirect to the original JupyterHub
URL.

To address this issue, we put JupyterHub behind a reverse
HTTP proxy, use an authentication middleware and use a
customized authenticator that authenticates the user through an
HTTP header. The exact mechanism is shown in Fig. 5.

Fig. 5. Integration of JupyterHub into Testbed’s Authentication System



Assuming that /jupyter is the public facing base URL
of JupyterHub. When a user tries to access JupyterHub from
the browser, the reverse HTTP proxy uses an authentication
middleware that checks if the user has been authenticated with
the testbed. If the user is authenticated, it adds to the request an
X-Authorized-User header with the unique identifier of the
user as its value and then forwards the request to JupyterHub.
Otherwise, it sends an API request to the authentication
endpoint of the testbed with the success URL set to the original
request URL.
Under this scheme, each hub user is a verified user on

the testbed and the authenticator identifies the user by the
X-Authorized-User header value, which is then returned by
the authenticator and forwarded to the spawner.
Websocket request to the single-user notebook server is

initiated when a user tries to open terminals or execute
notebooks in JupyterHub. However, it is unnecessary to
add an authentication middleware for websocket requests to
JupyterHub. If a user hasn’t authenticated with the testbed,
he/she hasn’t been authenticated by JupyterHub, which means
that the cookie for JupyterHub is not set in the user’s browser.
When the user tries to open a JupyterHub URL that will initiate
a websocket request, the notebook server’s API call to the hub
for authenticating the user will fail. Consequently, the user
is redirected to the login page of JupyterHub and the reverse
HTTP proxy will redirect the user to testbed’s login page.

B. Spawner

The NIST testbed uses a single server and each testbed user
is not necessarily a system user on the base station. Therefore,
DockerSpawner becomes a natural choice, where a notebook
instance is launched in a docker container on a single host. In
this case, containerization of notebook server is preferred as

• it provides greater isolation from the host, which is
beneficial in terms of security as users can execute
arbitrary Python scripts in the notebook server.

• it saves the effort to create a system account for each
testbed user in advance as docker containers can be created
and destroyed on demand.

• creating system account takes up resources and system
accounts will not be used for purposes other than spawning
notebook servers.

When the notebook server is launched in a container,
additional work needs to be done to persist users’ data and
allow users to access resources on the docker host. This will be
discussed in Section IV-C. In addition, it is worth noting that
the advantages of containerization of notebook servers comes
at the cost of making a per-user Python/Conda environment
much more difficult to achieve.

C. Data Access and Storage

Within the notebook server, we wish to give each user access
to the MongoDB database and media files on the remote server,
persist users’ notebooks across container restart, and finally to
enable users to easily share notebooks with other hub users.

The services running on the base station is visualized in
Fig. 6, with services irrelevant for data access within the
notebook servers omitted.

Fig. 6. Services on Base Station

As shown in Fig. 6, all containers running notebook servers
are connected to the user-defined docker bridge network
jupyter where the port on which the notebook server listens
on is mapped to a randomly assigned port on the host. The
MongoDB database runs inside a docker container on another
bridge network testbed_default and has the port it runs
on mapped to the same port on all network interfaces of the
docker host.
To prevent the notebook server from being externally

accessible at port 32813 of the host shown in the graph above,
we could bind its port to be only accessible from the loopback
device 127.0.0.1 by providing the host IP to which it can be
accessed in the -p flag in the docker start command.
Since MongoDB is accessible on all interfaces of the

host on port 27017, within the notebook server, we can use
the pymongo Python package to establish a connection to



host-gateway:27017. Starting from docker 20.10 on Linux,
host-gateway is available and resolves to the IP of the
network gateway. If an older version of docker is used, we
could get around this issue by retrieving the IP in JupyterHub
configuration file using the netifaces Python package and
pass it along to the container via the extra_hosts key in
c.DockerSpawner.extra_host_config in the JupyterHub
configuration file.

We use docker bind mount to mount the media file directory
on the host to a directory in the container with read only access.
This makes the media files available within the notebook server.

Docker volumes are attached to containers and each is
mounted into a directory within the container. Files put into
the mounted directory are stored on the filesystem of the
docker host and is managed by docker. Docker volume is
identified by its name. When it is attached to a container, it
will be automatically created if it doesn’t exist yet. Thus, we
could attach a jupyter-username volume, where username
resolves to the hub username, to the container running notebook
server to persist users’ data. Since docker volume can be
attached to multiple containers at the same time, we could
attach the same volume to each user’s container for notebook
and file sharing.

notebook_dir = '/home/jovyan/nist'
user_file_dir = f'{notebook_dir}/notebook'
media_file_dir = f'{notebook_dir}/media'
share_dir = f'{notebook_dir}/share'

c.DockerSpawner.notebook_dir = notebook_dir
c.DockerSpawner.volumes = {
'jupyterhub-{username}': user_file_dir,
'jupyterhub-shared': share_dir,
'/srv/lmr/wavs': {

'bind': media_file_dir,
'mode': 'ro'

}
}

We can specify bind mounts and volumes that
need to be attached to the container via the option
c.DockerSpawner.volumes. When the configuration file is
loaded, {username} will be replaced with hub username. If
the key is not a valid path on the filesystem, it is treated as a
volume.

To sum up, we use bind mount to allow users to access media
files on the remote server within the container. We attach a
per-user docker volume to the container for persisting users’
data and a shared docker volume for sharing notebooks. Lastly,
the MongoDB database is available at host-gateway:27017
within the container.

D. Papermill
When a notebook that analyzes data on one experiment could

be applied to a set of other similar experiments, we may wish to
run the notebook on another experiment by simply specifying

necessary information such as the name of the experiment. In
this way, we could automate some data analysis tasks.
We can prepare several base notebooks in advance and

use the Python package papermill [14] for parameterizing and
executing notebooks. It can be used either through the command
line interface (CLI) or the Python API.
An example of papermill usage through CLI:
$ papermill local/input.ipynb \

local/output.ipynb \
-p num 11 \
-r experiment_run_id f83jh83

Local file paths are prefixed with local/. The above
command will inject a cell at the top of the notebook
named input.ipynb under the current directory with parameters
experiment_run_id set to the string f83hj83 and num set to
the number 11. It will then execute the notebook and produce
an output file named output.ipynb under the current working
directory.

V. Conclusion
The scalability and ease of customization and integration of

JupyterLab makes JupyterHub an ideal framework for managing
concurrent access to multiple JupyterLab instances.
We presented an architecture that leverages JupyterHub to

provide concurrent JupyterLab access from web browsers for
multiple authenticated users to analyze experiment data and files
on a remote server. To integrate JupyterHub into an existing
authentication system, we put JupyterHub behind a reverse
HTTP proxy and customizes JupyterHub’s authenticator to au-
thenticate users via an HTTP header. We used DockerSpawner
for spawning notebook servers in a docker container, docker
volume to persist users’ files in the container and bind mounts to
make data on the remote server available inside the container.
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